Курс лекций по строительной механике Задачи по строительной механике Курс лекций по физике Примеры решения задач по алгебре Понятие комплексного числа

Алгебра лекции. Решение задач контрольной работы

Округление чисел

В практической деятельности человека бывают числа двух видов: точные и приближённые . Часто знание лишь о приближённом числе достаточно для понимания сути дела. Иногда употребляют приближённые числа, так как точное не требуется, а иногда точное число невозможно найти в принципе.

Пример 1

У треугольника 3 стороны. Число 3 – точное.

Пример 2

Сколько учеников в вашей школе? Вряд ли кто-нибудь, кроме директора, ответит точно на этот вопрос. Ученик же посчитает так: 20 классов примерно по 25 человек, получится примерно 500. Если спрашивающего устраивает такая точность, можно считать, что мы получили хорошее приближение.

В приближённых вычислениях часто приходится округлять как точные, так и приближённые числа. Под округлением понимают отбрасывание одной или нескольких последних цифр в десятичном представлении числа. При округлении соблюдают следующие правила.

Правило 1

Если первая из отбрасываемых цифр больше 5, то последняя из сохраняющихся цифр увеличивается на 1. Если первая из отбрасываемых цифр равна 5, а за ней следуют одна или несколько значащих цифр, то последняя из сохраняющихся цифр также увеличивается на 1.

Пример  3

Округлить число 74,28 до десятых.

Показать решение

При округлении числа 74,28 до десятых следует написать 74,3. Действительно, за цифрой 2, обозначающей разряд десятых следует цифра 8, которая больше 5. Следовательно, цифру 2 нужно увеличить на 1. Получается, как и было сказано, 74,3.

Ответ. 74,3.


Понятие комплексного числа