Курс лекций по строительной механике Задачи по строительной механике Курс лекций по физике Примеры решения задач по алгебре Понятие комплексного числа

Алгебра. Арифметические операции

Делители и кратные

Для натурального числа b всякое целое число a единственным образом представимо в виде a  =  bq  +  r , где 0 ≤  r  ≤ | b |.

Со времен древних греков известен рисунок, иллюстрирующий доказательство этой теоремы:

Рисунок 1.1.2.1

Если натуральное число p не делится на натуральное число q , то говорят о делении с остатком . Так, если p – делимое, q – делитель и p  >  q , то p  =  kq  +  r , где r  <  q , k – частное, r – остаток. Деление без остатка описывается случаем r  = 0.

Если положить, например, q  = 5 и r  = 1, то получим p  = 5 k  + 1, что представляет собой общую формулу чисел, при делении которых на 5 в остатке получается 1.

Модель 1.1. Деление с остатком

Напомним, что для натурального числа q всякое натуральное число p единственным образом представимо в виде p  =  kq  +  r .

Все натуральные числа имеют, по крайней мере, два натуральных делителя: единицу и самого себя. В случае с единицей эти два делителя совпадают. Все остальные натуральные числа (кроме 1) имеют, по крайней мере, два различных натуральных делителя: единицу и самого себя.

 

Простыми называются натуральные числа, которые не имеют других натуральных различных делителей, кроме единицы и самого себя.

Числа, которые имеют и другие натуральные делители кроме единицы и самого себя, называют составными .

Число 1 имеет единственный натуральный делитель – самого себя. А значит, согласно данным определениям, оно не является ни простым, ни составным.

Для того, чтобы доказать, что данное натуральное число простое, достаточно установить, что оно не делится ни на одно из чисел от 2 до включительно. Если же N делится на одно из таких чисел, то оно составное.


Современное seo посмотреть.
Понятие комплексного числа