Курс лекций по строительной механике Задачи по строительной механике Курс лекций по физике Примеры решения задач по алгебре Понятие комплексного числа

Алгебра лекции. Задачи домашней работы

Тригонометрические выражения

Докажем, что отношения и не зависят от величины радиуса R . Действительно, выберем на отрезке OA точку такую, что Построим окружность с центром в начале координат радиуса Построенная окружность пересекает радиус-вектор в точке Так как векторы и коллинеарны и одинаково направлены, то

Однако равные векторы имеют равные координаты, следовательно,

Откуда следует после деления обеих частей последних равенств на R 1, что

Итак, для любого угла поворота отношение координат радиус-вектора к его длине не зависит от этой длины радиус-вектора. Следовательно, отношения и характеризуют не окружность, а лишь угол поворота. Значит, для того, чтобы рассмотреть основные свойства этих отношений, можно взять окружность любого радиуса, например, R =  1. Так мы и сделаем. Окружность единичного радиуса с центром в начале координат называется тригонометрической окружностью .

Модель 2.6. Координатная окружность

Ввиду всего вышесказанного, рассмотренные отношения и пр. как характеристики только угла (но не окружности) удобно как-либо обозначить. Введём несколько ключевых определений.

 

Косинусом угла α называется абсцисса x точки B − конца радиус-вектора единичной окружности, образующего угол α с осью абсцисс. cos α = x .

 

 


Сложение и вычитание обыкновенных дробей