Поверхностный интеграл первого и второго рода

Туризм

Агротуризм

Дизайн

Ландшафтный дизайн
ДИЗАЙН В ЛЕГЕНДАХ
Американский коммерческий дизайн
Современный элитарный дизайн
Западная служба дизайна

Мировая художественная культура

 АНТИЧНАЯ ЦИВИЛИЗАЦИЯ

Графика

Пример выполнения РГР по черчение
Соединение болтом
Выполнение чертежей в AutoCAD
КОМПАС-3D
Инженерная и компьютерная графика
Позиционные задачи
Метрические задачи
Решение пространственных задач
Построить пересечение конуса и призмы
Графический способ задания поверхностей
Выполнения заданий контрольной работы
Развёртки поверхностей

Сопромат

Курс лекций по строительной механике
Задачи по строительной механике
Курс «Детали машин»
Задачи курсового проекта

Физика, электротехника

Электротехника курсовая
Лабораторные работы по ТОЭ
Расчёт трёхфазной цепи
Курсовая работа по радиотехнике
Решение задач по ядерной физике
Курс лекций по физике
Примеры расчета электрических цепей

Информатика

Корпоративные информационные системы

Атомная энергетика

Курс лекций по физике ядерного реактора
Аварийные ситуации
Радиоактивные отходы
Термоядерные реакторы
Источники радиоактивного облучения

Математика

Примеры решения задач по алгебре
Понятие комплексного числа
Исследовать систему уравнений
Дифференциальные уравнения
Предел последовательности
Вычисление производной
Теория поля
Контрольная работа по теме интегралы
Геометрические и физические приложения
кратных интегралов
Поверхностный интеграл первого
и второго рода
 

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Вычислить массу поверхности S с распределённой плотностью = 4- z.

К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости.

Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Поверхностный интеграл 2-го рода имеет вид

Вычислить поверхностный интеграл 2-го рода по внешней боковой стороне цилиндра , лежащей в первом октанте и ограниченной плоскостями х = 0,5, х = 1, у =0,5, причём 0,5 < х < 1, у > 0,5.

Вычислить интеграл  по верхней стороне полусферы

Дифференциальное и интегральное исчисление функции одной переменной Пусть D — некоторое множество чисел. Если задан закон, по которому каждому числу x из множества D ставится в соответствие единственное определенное число y, то будем говорить, что на множестве D задана функция, которую назовём f. Число y — это значение функции f в точке x, что обозначается формулой y = f(x).

Найти формулу вычисления объема шара. В поперечных сечениях шара (сечения параллельны плоскости XOY) получаются окружности. Уравнение шара имеет вид:

Изменить порядок интегрирования.

Вычислить. 

Вычислить:  

Задача вычислить:

Найти площадь фигуры, ограниченной данными линиями у=11 – х2; у= - 10х

Найти площадь фигуры, ограниченной данными линиями: у2-4у+х2=0; у2-8у+х2=0; ; Указание. В этой задаче двойной интеграл удобнее вычислять в полярной системе координат.

Пластина D задана ограничивающими ее кривыми M--поверхностная плотность. Найти массу пластины.

Найти объем тела W, заданного ограничивающими его поверхностями

Найти объем тела W, заданного ограничивающими его поверхностями: х2+у2+2х=0; z=25/4 –y2; z=0.

Решение: Возведя в квадрат обе части первого уравнения и переписав его в виде x2+y2+z2=36, находим, что первое уравнение есть уравнение верхней половины сферы с центром в начале координат и радиусом равным 6 (верхней потому что перед корнем стоит знак «+»). Второе уравнение приводится к виду z2=(x2+y2)/3. Это есть уравнение конуса, образованного вращением прямой  вокруг оси oz. Тело, ограниченное этими поверхностями, изображено на

найти объем тела W, заданного ограничивающими его поверхностями z=10(x2+y2)+1; z=1-20y.

Вычислить площадь, ограниченную параболой  и прямыми  и .

Найти длину дуги , отсеченную прямой .

Вычислить длину кардиоиды , соответствующую .

Вычислить площадь, ограниченную кривыми

Вычислить

Вычислить площадь эллипса с полуосями

Вычислить площадь, ограниченную кривой . Найти длину дуги астроиды

Найти длину дуги окружности радиуса , записав её уравнение в полярных координатах

Найти объём шара радиуса .

Давление на пластинку, погруженную вертикально в жидкость Для вычисления силы давления жидкости используют закон Паскаля, согласно которому сила давления жидкости на пластинку площади  с глубиной погружения  равна , где   - плотность жидкости,  - ускорение свободного падения.

Найти силу давления , испытываемую полукругом радиуса , погруженным вертикально в воду так, что его диаметр совпадает с поверхностью воды

Найти момент инерции однородной пластинки, имеющей форму треугольника с основанием  и высотой , относительно его основания. Будет предполагать пластинку однородной, так что её поверхностная плотность равна  (т.е. масса, приходящаяся на единицу площади) будет постоянной и, следовательно, , где  - площадь пластинки.

Найти статический момент однородной пластинки, имеющей форму полукруга радиуса  и плотность , относительно основания полукруга.

Вычислить Оценить сходимость

Оценить сходимость несобственного интеграла   при различных значениях .

Исследовать сходимость .

Исследовать сходимость интеграла .

Доказать, что интеграл  сходится равномерно относительно параметра .

Интеграл Дирихле. Вычислить  .

Вычислить объём тела, ограниченного координатными плоскостями и плоскостью   

На главную страницу