Примеры решения задач по алгебре Понятие комплексного числа Исследовать систему уравнений Дифференциальные уравнения Предел последовательности Вычисление производной

Контрольная работа по математике. Примеры выполнения заданий

Задача. Найти область сходимости функционального ряда

Решение. Это частный случай функционального ряда – степенной ряд вида

Радиус сходимости R такого ряда можно найти по одной из формул:

  или .

Интервал абсолютной сходимости степенного ряда определяется неравенством . Вне этого интервала, при  ряд расходится. На концах интервала – в точках  поведение ряда исследуется особо.

Находим радиус сходимости для заданного ряда по первой формуле. Так как , получаем

Тогда ряд сходится, если , откуда , то есть .

Исследуем сходимость ряда в точках  и .

При   исходный ряд принимает вид

Это обобщенный гармонический сходящийся ряд ( сходится, если ).

При   получаем знакочередующийся ряд   Этот ряд сходится (притом абсолютно), так как сходится ряд из абсолютных величин его членов:

Итак, исходный ряд сходится для всех .

ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ

Криволинейный интеграл второго рода 

численно равен работе

силы  на пути MN. На этом физическом смысле криволинейного интеграла второго рода основано задание 6: вычислить работу силы  при перемещении точки по ломаной линии MNV.

Задана сила

точки М(3; l), N(-1; 5), V(0; 7).

 РЕШЕНИЕ Интеграл по ломанной линии MNV вычисляем  суммой двух интегралов: по отрезку прямой MN и отрезку NV. Определим уравнение прямой интегрирования MN, как уравнение прямой, проходящей через две точки

Таким образом

Работу вычисляем по формуле

где

  Криволинейный интеграл вычисляем по формуле (35):

Затем определяем уравнение прямой, проходящей через точки N, V. Получим у = 2х + 7,  dy = 2dx. Применяем формулу (35):


На главную страницу. Практические по математике