Примеры решения задач по алгебре Понятие комплексного числа Исследовать систему уравнений Дифференциальные уравнения Предел последовательности Вычисление производной

Контрольная работа по математике. Примеры выполнения заданий

Дифференциальные уравнения

Задача Найти общее решение дифференциального уравнения .

Решение. Это уравнение вида - линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки  где u и v две неизвестные функции. Подставляя в исходное уравнение  получим

  или 

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим  откуда  

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Вычисление площади кривой поверхности

Ранее мы установили, что площадь кривой поверхности , заданной уравнением  и расположенной над областью  в плоскости , вычисляется по формуле

,

где .


На главную страницу. Практические по математике