Примеры решения задач по алгебре Понятие комплексного числа Исследовать систему уравнений Дифференциальные уравнения Предел последовательности Вычисление производной

Контрольная работа по математике. Примеры выполнения заданий

Дифференциальные уравнения

Задача . Найти общее решение дифференциального уравне­ния 

Решение. Это линейное однородное дифференциальное уравнение 3 порядка с постоянными коэффициентами. Составим характеристическое уравнение (см. прил.2, п.1)

Так как его корни действительны и различны (), общее решение исходного уравнения имеет вид

  или 

Задача 30. Найти общее решение дифференциального уравне­ния 

Решение. Данное уравнение является линейным однородным дифференциальным уравнением 4 порядка с постоянными коэффициентами.

Составим характеристическое уравнение (см. прил. 2, п.1)

Паре корней  соответствует решение

 

Комплексным корням  соответствует решение

Общее решение исходного уравнения есть сумма полученных решений

Поверхностные интегралы второго рода

 Если на поверхности S есть хотя бы одна точка и хотя бы один не пересекающий границу поверхности контур, при обходе по которому направление нормали в точке меняется на противоположное, то такая поверхность называется односторонней.

 Если при этих условиях направление нормали не меняется, то поверхность называется двухсторонней.

Будем считать положительным направлением обхода контура L, принадлежащего поверхности, такое направление, при движении по которому по выбранной стороне поверхности сама поверхность остается слева.

 Двухсторонняя поверхность с установленным положительным направлением обхода называется ориентированной поверхностью.

 Рассмотрим в пространстве XYZ ограниченную двухстороннюю поверхность S, состоящую из конечного числа кусков, каждый из которых задан либо уравнением вида z = f(x, y), либо является цилиндрической поверхностью с образующими, параллельными оси OZ.

 Определение. Если при стремлении к нулю шага разбиения поверхности S интегральные суммы, составленные как суммы произведений значений некоторой функции на площадь частичной поверхности, имеют конечный предел, то этот предел называется поверхностным интегралом второго рода.

  (25.4)

Формула (25.4) – поверхностный интеграл второго рода.


На главную страницу. Практические по математике