Примеры решения задач по алгебре Понятие комплексного числа Исследовать систему уравнений Дифференциальные уравнения Предел последовательности Вычисление производной

Контрольная работа по математике. Примеры выполнения заданий

Пример. Найти момент инерции однородной круглой пластинки

(x – a)2 + (y – b)2 < 4b2 относительно начала координат.

Решение.

В силу однородности пластинки положим ее плотность γ(х,у) = 1.

Центр круга расположен в точке C(a, b), а его радиус равен 2b. я Уравнения границ пластинки имеют вид

Вычислим каждый из полученных интегралов отдельно.

Для вычисления интеграла I1 сделаем замену:

  при x = a – 2b  при x = a + 2b

Для вычисления интеграла I2 преобразуем подынтегральную функцию по формуле разности кубов:

Тогда

Следовательно,

Моменты инерции фигуры D относительно осей Ох и Оу:

 (15)

5) Масса плоской фигуры D переменной поверхностной плотности γ = γ (х, у):

 (16)

Число   называется пределом интегральных сумм  при  (обозначают ), если для любого  существует  такое, что для любого разбиения кривой  у которого , при любом выборе точек  выполняется неравенство

 .

Если существует конечный предел интегральных сумм  при , то его называют криволинейным интегралом  I рода (по длине дуги) от функции  по кривой .

Криволинейный интеграл I рода от функции  по кривой  обозначают 

 

( называют подынтегральной функцией,  – областью интегрирования,  – переменные интегрирования,  – дифференциал длины дуги). 

Если существует , то функция  называется интегрируемой по кривой .

Из определения следует, что криволинейный интеграл I рода не зависит от того, в каком направлении пробегается кривая , т.е.

.

Достаточное условие существования криволинейного интеграла I рода будет сформулировано позже, когда покажем способ его вычисления.

Определение криволинейного интеграла I рода по структуре такое же, как и определение определенного интеграла. Поэтому криволинейный интеграл I рода обладает теми же свойствами, что и определенный интеграл. Приведем эти свойства без доказательства.


На главную страницу. Решение задач