Примеры решения задач по алгебре Понятие комплексного числа Исследовать систему уравнений Дифференциальные уравнения Предел последовательности Вычисление производной

Контрольная работа по математике. Примеры выполнения заданий

Разделите отрезок интегрирования на 10 равных частей точками

   

;  значит 

Итак, , значит .

Взяв значения функций в точках деления до третьего знака, получим точность числа   до второго знака.

21.1 Стационарные точки:

  

  x=-2, y=-1 ,следовательно, есть одна стационарная точка (-2, -1)

Исследуем функцию на границе области. Граница состоит из отрезка оси , отрезка оси и отрезка АВ прямой

а) На оси , значит . Эта функция должна быть рассмотрена на отрезке . Так как функция на отрезке непрерывна, она достигает наибольшего и наименьшего значения. Это происходит или в точках стационарности, или на концах отрезка. Определим точку стационарности .

Определим значение функции при  и на концах отрезка [-5,0]

 

б) На оси   значит 

 

   

в) Исследуем функцию z на отрезке AB. Уравнение АВ , значит   

 

 

 

Сравним теперь значение z  в стационарной точке (-2,-1) с наибольшими и наименьшими значениями на отрезках ОА, ОВ и АВ.

, получаем, что наименьшего своего значения функция достигла в стационарной точке , а наибольшего – на границе области в точке (0,-5).

ТРОЙНОЙ ИНТЕГРАЛ В ДЕКАРТОВЫХ КООРДИНАТАХ.

Вычисление тройного интеграла сводится к последовательному вычислению трёх однократных интегралов.  При этом дифференциал объёма равен

произведению дифференциалов независимых переменных dv = dxdydz. Область интегрирования называется правильной, если прямая, проходящая через произвольную внутреннюю точку области интегрирования параллельно каждой оси координат пересекает границу области в двух точках. В правильной области можно выбрать любую последовательность интегрирования по переменным х, у, z. Вычисление начинается с построения рисунка области интегрирования по заданным уравнениям границ области. Выбрав первую переменную интегрирования, нужно построить проекцию области интегрирования на плоскость двух других переменных. Например, если первое интегрирование производится по переменной z, то будет нужна проекция области на плоскость хОу.

Пусть поверхность, ограничивающая область V снизу, имеет  уравнение

Z = F1(х,y) а поверхность, ограничивающая область V сверху Z = F2(х,y) (рисунок 21). Проекцию области V на плоскость хОу обозначим D. Она имеет уравнения границ y=y1(х) и y=y2(х) Тогда тройной интеграл по области V равен трёхкратному интегралу:

Рис.8

По формуле (17) можно сформулировать правило расстановки пределов в трёхкратном интеграле:

1. В пределах интеграла по первой переменной в общем случае стоят функции двух других переменных;

2. В пределах интеграла по второй переменной в общем случае стоят функции третьей переменной;

3. В пределах интеграла по третьей переменной всегда стоят числа, равные предельным значениям проекции области V на соответствующей оси.

В частном случае, когда границами области V являются плоскости, параллельные координатным плоскостям, в пределах всех однократных интегралов стоят постоянные.

Контрольная работа по математике. Примеры выполнения заданий


На главную страницу. Решение задач