Примеры решения задач по алгебре Понятие комплексного числа Исследовать систему уравнений Дифференциальные уравнения Предел последовательности Вычисление производной

Контрольная работа по математике. Примеры выполнения заданий

Стационарные точки

 находятся вне рассматриваемой области. Наибольшего значения функция достигает на границе области в точке , а . Наименьшего значения функция достигает в точке , а .

 21.3 Обозначим стороны треугольникаи . По формуле Герона площадь треугольника , так как - полупериметр, то  и  становится функцией не трёх, а только двух переменных

Вместо того, чтобы искать экстремум этой функции будем искать экстремум её квадрата . Находим стационарные точки   . Исследованию подлежит только одна точка , так как остальные точки не удовлетворяют смыслу задачи(не может быть треугольника, у которого сторона равна половине периметра).

Проверяем точку М. В ней функция достигает максимума. Итак, при

Так как , то треугольник равносторонний.

22.1

 

22.2 Градиент функции Z и производная по направлению a  связаны формулой - то есть производная по направлению равна проекции вектора-градиента на вектора.

В нашем случае

23.1 Для решения нужно представить себе область интегрирования. Решив систему

можно построить область интегрирования и найти точки пересечения линий, ограничивающих область пересечения.

   

 

Точки пересечения и . Постройте область интегрирования. Теперь изменим порядок интегрирования, то есть внешний интеграл будем брать по , а внутренний по . Заметим, что в пределах изменения  от -1 до 8 область интегрирования ограничена снизу одной линией: параболой, а сверху – двумя: параболой и прямой. Разобьем область интегрирования Д на две  и . Значит, придётся разбить наш интеграл на два. Область   ограничена сверху и снизу ветвями параболы  и , а область  снизу ограничена ветвью параболы , а сверху прямой  (при ).

ТРОЙНОЙ ИНТЕГРАЛ В ЦИЛИНДРИЧЕСКИХ КООРДИНАТАХ

Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга. Если этой координатной плоскостью является плоскость хОу, то цилиндрические координаты r, φ, z связаны с прямоугольными координатами х, у, z соотношениями

где

Формула замены переменных в тройном интеграле имеет вид:

ТРОЙНОЙ ИНТЕГРАЛ В СФЕРИЧЕСКИХ КООРДИНАТАХ

Если область V ограничена сферой или частью сферы, тройной интеграл вычислить проще переходом к сферическим координатам. Точка М в сферических координатах однозначно определяются величинами ρ, φ, θ. Здесь ρ- расстояние ОМ до точки из начала координат; φ- угол между проекцией ОМ на плоскость хОу и

осью Ох; θ - угол между положительным направлением оси Oz и лучом ОМ. Связь между прямоугольными декартовыми координатами х, у, z точки М и её

сферическими координатами ρ, φ, θ определяется соотношениями

где

Дифференциал объёма в сферических координатах выражается как

Формула замены переменных в тройном интеграле имеет вид:

Контрольная работа по математике. Примеры выполнения заданий


На главную страницу. Решение задач