Теория поля Контрольная работа по теме интегралы Геометрические и физические приложения кратных интегралов Поверхностный интеграл первого и второго рода Примеры решения задач по алгебре

Контрольная работа по математике. Примеры выполнения заданий

Пример. Имеются два пункта производства (A и B) некоторого вида продукции

и три пункта (I, II, III) его потребления. В пункте А производится 250 единиц продукции, а в пункте В - 350 единиц. В пункте I требуется 150 единиц, в пункте II -240 единиц и в пункте III - 210 единиц. Стоимость перевозки одной единицы продукции из пункта производства в пункт потребления дается следующей таблицей.

Таблица 1

Пункт

производства

Пункт потребления

I

II

III

A

4

3

5

B

5

6

4

Требуется составить план перевозки продукции, при котором сумма расходов на перевозку будет наименьшей.

Решение. Обозначим количество продукции, перевозимой из пункта А в пункт I через x, а из пункта А в пункт II - через y. Так как полная потребность в пункте I равна 150 единицам, то из пункта В надо завезти (150 - x) единиц. Точно так же из пункта В в пункт II надо завезти (240 - y) единиц. Далее: производительность пункта А равна 250 единицам, а мы уже распределили (x + y) единиц. Значит, в пункт III идет из пункта А (250 - x -y) единиц. Чтобы полностью обеспечить потребность пункта III, осталось завезти 210 - (250 - x -y) = x + y - 40 единиц из пункта В. Итак, план перевозок задается следующей таблицей.

Таблица 2

Пункт

производства

Пункт потребления

I

II

III

A

x

y

250 - x - y

B

150 - x

240 - y

x + y - 40

Чтобы найти полную стоимость перевозки, надо умножить каждый элемент этой таблицы на соответствующий элемент предыдущей таблицы и сложить полученные произведения. Получим выражение:

S(x,y) = 4x + 3y + 5 (250 - x - y) + 5 (150 - x) +
+ 6 (240 -y) + 4 (x + y - 40) = - 2x - 4y +3280.

По условию задачи требуется найти минимум этого выражения. Но величины x и y не могут принимать произвольных значений. Ведь количество перевозимой продукции не может быть отрицательным. Поэтому все числа таблицы 2 неотрицательны:

x ³ 0, y ³ 0, 250 - x - y ³ 0, 150 -x ³ 0, 240 - y ³ 0, x + y - 40 ³ 0. (3.12)

Итак, нам надо найти минимум функции S(x,y) в области, задаваемой системой неравенств (2.12). Эта область изображена на рис.3 - она является многоугольником, ограниченным прямыми:

x = 0, y = 0, 250 - x - y = 0, 150 - x = 0, 240 - y = 0, x + y - 40 = 0.

Рис. 3.1.

Находим координаты вершин многоугольника: A (0,40), B (40,0), C (150,0), D (150,100), E (10,240), F (0,240). Очевидно, что функция S(x,y) принимает наименьшее значение в одной из вершин многоугольника CDEFKL.

В самом деле, выясним, где располагаются точки, в которых значения этой функции одинаковы (так называемые линии уровня функции
S (x,y) = -2x - 4y + 3280). Если значение функции S (x,y) равно c, где с - вещественная константа, то - 2x - 4y + 3280 = c. Но это уравнение прямой линии. Значит, для функции S линиями уровня являются прямые линии, которые параллельны друг другу при различных значениях c. Если линия уровня пересекает многоугольник, то соответствующее значение c не является ни наибольшим, ни наименьшим. Ведь немного изменив c, мы получим прямую, которая также пересекает многоугольник. Если же линия уровня проходит через одну из вершин, причем весь многоугольник остается по одну сторону от этой линии, то соответствующее значение c является наибольшим или наименьшим.

Итак, функция S (x,y) = -2x - 4y + 3280 принимает наименьшее значение на многоугольнике в одной из его вершин. Поскольку мы уже знаем эти вершины, то подставим соответствующие значения координат и найдем, что

  S (0,40) = 3120, S (40,0) = 3200, S (1,500) = 2980,

 S (150,100) = 2580, S (10,240) = 2300, S (0,240) = 2320.

Наименьшим из этих значений является 2300. Это значение функция принимает в точке E (10, 240). Значит, x = 10, y = 240. Подставляя эти значения в план перевозок (см. таблицу 2), получаем:

Таблица 3

Пункт

производства

Пункт потребления

I

II

III

A

10

240

0

B

140

0

210

Таким образом, из пункта А в пункт I надо перевезти 10 единиц продукции, из пункта А в пункт II - 240 единиц и т. д. Стоимость намеченного плана равна 2300.

Рассмотренная задача относится к большому классу задач, возникающих не только в экономике, но и в других областях человеческой деятельности. Задачи такого типа называются задачами линейного программирования.

 Определение. Декартова система координат, базис которой ортонормирован называется декартовой прямоугольной системой координат.

  Пример. Даны векторы(1; 2; 3), (-1; 0; 3), (2; 1; -1) и (3; 2; 2) в некотором базисе. Показать, что векторы ,  и образуют базис и найти координаты вектора  в этом базисе.

  Векторы образуют базис, если они линейно независимы, другими словами, если уравнения, входящие в систему:

 линейно независимы.

Тогда .

Это условие выполняется, если определитель матрицы системы отличен от нуля.

 Для решения этой системы воспользуемся методом Крамера.

D1 =

;

D2 =

D3 =

Итого, координаты вектора в базисе , ,  { -1/4, 7/4, 5/2}.

 При использовании компьютерной версии “Курса высшей математики” можно запустить программу, которая позволит разложить любой вектор по любому новому базису, т.е. решить предыдущий пример для любых векторов , , , .

 Длина вектора в координатах определяется как расстояние между точками начала и конца вектора. Если заданы две точки в пространстве А(х1, y1, z1), B(x2, y2, z2), то .

 Если точка М(х, у, z) делит отрезок АВ в соотношении l/m, считая от А, то координаты этой точки определяются как:

 В частном случае координаты середины отрезка находятся как:

x = (x1 + x2)/2; y = (y1 + y2)/2; z = (z1 + z2)/2.


На главную страницу. Курсовая по математике