Теория поля Контрольная работа по теме интегралы Геометрические и физические приложения кратных интегралов Поверхностный интеграл первого и второго рода Примеры решения задач по алгебре

Контрольная работа по математике. Примеры выполнения заданий

Пример. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи.

Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т1, Т2, Т3, Т4. В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Изделие

Расход ткани

Т1

Т2

Т3

Т4

Зимнее пальто

5

1

0

3

Демисезонное пальто

3

2

0

2

Плащ

0

0

4

3

1. Сколько метров ткани каждого типа потребуется для выполнения плана ?

2. Найти стоимость ткани, расходуемой на пошив изделия каждого вида.

3. Определить стоимость всей ткани, необходимой для выполнения плана.

4. Подсчитать стоимость всей ткани с учетом ее транспортировки.

Решение. Обозначим через А матрицу, данную нам в условии, т. е.,

A = ,

тогда для нахождения количества метров ткани, необходимой для выполнения плана, нужно вектор X умножить на матрицу А:

X А = (10,15, 23)  =  =
= (95, 40, 92, 129).

Стоимость ткани, расходуемой на пошив изделия каждого вида, найдем, перемножив матрицу А и вектор CT:

А CT = =.

Стоимость всей ткани, необходимой для выполнения плана, определится по формуле:

X А C T = (10,15,23)=.

Наконец, с учетом транспортных расходов вся сумма будет равна стоимости ткани, т. е. 9472 ден. ед., плюс величина

X А P T = (95, 40, 92, 129).

Итак, X А C T + X А P T = 9472 + 1037 = 10509 (ден. ед).

Пример. Даны матрицы А = ; B = , найти 2А + В.

2А = , 2А + В = .

Операция умножения матриц.

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

A×B = C;

.

 Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

Свойства операции умножения матриц.

1)Умножение матриц не коммутативно, т.е. АВ ¹ ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А×Е = Е×А = А

 Очевидно, что для любых матриц выполняются следующее свойство:

A×O = O; O×A = O,

где О – нулевая матрица.


На главную страницу. Курсовая по математике