Теория поля Контрольная работа по теме интегралы Геометрические и физические приложения кратных интегралов Поверхностный интеграл первого и второго рода Примеры решения задач по алгебре

Контрольная работа по математике. Примеры выполнения заданий

Задача. Для данного дифференциального уравнения методом изоклин построить интегральную кривую, проходящую через точку.

т.е. гипербола.

Задача. Найти линию, проходящую через точку , если отрезок любой ее касательной между точкой касания и осью делится на точке пересечения с осью абсцисс в отношении  (считая от оси ).

уравнение касательной.

-координаты произвольной точки, принадлежащие касательной.

По условию

и  подобны.

Точка принадлежит касательной, поэтому подставим координаты координаты точкив уравнение касательной.

Подставим (1) в (2).

Отсюда, уравнение искомой линии.

Метод замены переменной (подстановки)

 Для вычисления интеграла  сделаем замену , где  выбирается так, чтобы после преобразований данного интеграла и новой переменной , получился интеграл, который берется непосредственно.

Предварительно находим , тогда

 . (4)

После нахождения первообразной  необходимо вернуться к первоначальной переменной «».

  Пример 7.

.

  Пример 8.

.

  Замечание. Следующие интегралы удобно решать указанной заменой

 ;

 ;

 .


На главную страницу. Выполнение домашнего по математике