Курс лекций по электротехнике. Расчет электроустройств

Асинхронный двигатель.

Электрические машины. Принцип действия. В основу работы всех электрических машин положены два закона физики: электромагнитной индукции и закон Ампера. Величина ЭДС, наведенной в проводящем контуре, находящимся в магнитном поле: Следовательно, любой электромагнитной механизм должен иметь устройство для создания магнитного поля (в электрических машинах это статор) и совокупность проводников, в которых наводится ЭДС (якорь, ротор). Как создается магнитное поле физически безразлично. В электрических машинах оно создается катушками со стальными сердечниками или постоянными магнитами.

Машины постоянного тока. Устройство. Основными частями машины являются: Статор – неподвижная часть, которая служит для создания постоянного неподвижного магнитного поля; Якорь – вращающаяся часть машины. Статор – литой, на его внутренней поверхности смонтированы чередующиеся полюсы, на которых смонтированы обмотки возбуждения, создающие магнитное поле.

Механическая характеристика асинхронного двигателя

Регулирование частоты вращения асинхронного двигателя. Реверсирование асинхронного двигателя Все возможности регулирования вытекают из уравнения: Регулирование путем изменения частоты питающего напряжения может применяться, если имеется специальное оборудование для ее изменения. Изменение числа пар полюсов возможно, только для двигателей специального исполнения, а регулирование будет ступенчатым.

Элементы зонной теории твердого тела Все тела, в зависимости от их электрических свойств, условно могут быть отнесены к одной из трех групп: 1) проводники; 2) полупроводники; 3) диэлектрики. На макроскопическом уровне разница между этими группами веществ видится в их различной электропроводности при одинаковых условиях. Но возникает вопрос, а почему сильно разнятся электропроводности проводников и диэлектриков, полупроводников и проводников? Ответ на этот вопрос нужно искать в микростроении веществ, относящихся к той или иной группе.

Физическая природа проводимости Зонная теория и опытные данные показывают, что у всех металлов валентная зона заполнена лишь частично и либо соприкасается с зоной проводимости, либо зоны перекрываются. Поэтому, как отмечалось ранее, все металлы и сплавы хорошо проводят электрический ток. Отметим, что электроны, которые могут принимать участие в электрическом токе, называются свободными. Т.к. в металлах валентная зона перекрывается с зоной проводимости, то, следовательно, все валентные электроны могут принимать участие в электрическом токе. Число валентных электронов не зависит от температуры и у всех металлов одного порядка - 10 22 /см 3, а электропроводность отличается иногда в десятки раз, уменьшается с ростом температуры и зависит от содержания даже металлических примесей.

Рассмотрим подробнее влияние на электропроводность нескольких "препятствий" одновременно. "Препятствиями" на пути движения электронов могут быть тепловые отклонения атомов кристаллической решетки от идеальной периодичности, наличие в решетке инородных атомов - примесей, не занятые узлы решетки, атомы, занимающие чужие узлы, и т.д. Очевидно, что каждый вид "препятствий" будет приводить к наличию своего времени релаксации i.

Асинхронный двигатель.

Асинхронный двигатель предложен в 1889 г. Русским электротехником М.О.Доливо-Добровольским. Предложенная конструкция была настолько проста, что в основном сохранилась до настоящего времени. Из большого количества двигателей, эксплуатирующихся в промышленности и сельском хозяйстве, 90-95% приходится на асинхронные двигатели.

Устройство и принцип действия асинхронного двигателя.

Двигатель состоит из двух частей: неподвижный статор 1, и вращающийся ротор 3. Внутренняя часть статора собрана из листовой стали, для уменьшения вихревых токов. В пазах статора размещена трехфазная обмотка. На рис. 4.1 в каждой фазе показано по одному витку. Плоскости каждой фазы смещены друг от друга на 120о. В такой обмотке, подключенной к трехфазной сети, создается вращающееся магнитное поле, частота вращения которого n1 можно определить:

 (4.1)

где f – частота сети; р – число пар полюсов.

При промышленной частоте f=50 Гц частота вращения магнитного поля может принимать следующие значения:

р

1

2

3

4

5

3000

1500

1000

750

600

и т. д.

Ротор представляет собой цилиндр, набранный из листовой стали, в пазах которого располагается обмотка, которая выполняется чаще всего из алюминиевых стержней, соединенных между собой накоротко. Такая обмотка называется «беличье колесо», а ротор короткозамкнутым. Если обмотка выполнена также как и обмотка статора из изолированной проволоки, то они соединяются звездой, а ее свободные концы выводятся на контактные кольца, размещенные на валу ротора. На контактные кольца накладываются щетки, которые позволяют соединить вращающийся ротор с внешней цепью. Такая обмотка называется фазной и ротор также называется фазным.

Вращающееся поле индуцирует в обмотке статора и ротора ЭДС е1 и е2. Т. к. обмотка ротора замкнута, то в ней под действием ЭДС е2 возникает ток, при взаимодействии которого с магнитным полем, создается электромагнитный вращающий момент, который заставляет ротор вращаться с частотой n2, причем n2 < n1. Ясно, что величина ЭДС е2 зависит от скорости n1 - n2, с которой поле пересекает витки вращающегося ротора. Чем больше n1 - n2, тем больше ЭДС е2. Если n1 = n2, то Е2 = 0 и ротор вращаться не будет.

Величина:

 (4.2)

называется скольжением и заносится в паспорт двигателя. У работающего двигателя скольжение должно быть таким, чтобы вращающий момент двигателя Mвр уравновешивал тормозящий момент Mтор нагрузки, т. е. должно выполняться равенство:

Mвр = Mтор (4.3)

Если это равенство не выполняется – двигатель остановится.

При пуске двигателя, в момент когда ротор еще неподвижен, асинхронный двигатель подобен трансформатору и его электрическое состояние можно описать уравнениями для трансформатора:

 (4.4)

 (4.5)

 (4.6)

В отличие от уравнений трансформаторной ЭДС выражения 4.5 и 4.6 содержат сомножители  и   - обмоточные коэффициенты, учитывающие сдвиг по фазе между ЭДС в каждом витке обмоток статора и ротора. Величина этих коэффициентов 0,96-0,98. При пуске двигателя магнитное поле статора пересекает витки ротора с частотой n1, поэтому частота тока в неподвижном роторе будет такой же, как и в статоре, т. е.

f1 = f2 и  

У работающего двигателя магнитный поток пересекает витки ротора с частотой n = n1 – n2. Поэтому частота тока во вращающемся роторе будет:

, (4.7)

 т. е. она будет много меньше частоты сети. Аналогичные выражения могут быть получены для ЭДС ротора и его индуктивного сопротивления:

,

Учитывая 4.7, получим:

 (4.8)

При пуске ЭДС ротора будет больше, чем при работе: , поэтому при пуске ток двигателя превышает номинальный примерно в 7 раз.

Сопротивление ротора при работе двигателя также будет уменьшаться, за счет уменьшения его индуктивной составляющей:

X2s = X2 ·s

Ток в роторе можно определить по закону Ома:

 (4.9)

4.2. Электрический баланс асинхронного двигателя.

К фазе статора двигателя из сети подводится мощность:

Часть этой мощности расходуется на нагрев обмоток статора и перемагничивание сердечника статора, а большая часть вращающимся полем передается в ротор, образуя электромагнитную мощность:

 (4.10)

где  – электромагнитная мощность;

   – электрические потери на нагрев обмоток статора;

 - потери на перемагничивание сердечника статора.

Часть электромагнитной мощности тратится на нагрев обмоток ротора, а большая ее часть переходит в механическую мощность:

 (4.11)

где  - механическая мощность;

 – электрические потери на нагрев обмоток ротора.

Магнитные потери в роторе не существенны, т. к. они пропорциональны квадрату частоты тока, а она в роторе очень мала. Механическая мощность, за вычетом механических потерь в подшипниках и вентиляторе, смонтированных на валу ротора, отдается нагрузке:

 (4.12)

где  – мощность на вале двигателя;

 – механические потери.

В паспорте двигателя в качестве номинальной мощности указывается мощность на валу , а не потребляемая мощность . Отношение мощности на валу к потребляемой мощности называется коэффициентом полезного действия двигателя:

 (4.13)

КПД двигателя заносится в паспорт.

Из механики известно, что:

 (4.14)

где  – угловая частота вращения ротора.

Подставляя 4.14 и 4.15 в 4.11, получим:

 (4.16)

Решая 4.16 относительно Мвр, получим:

, (4.16)

Т. к. , а , то , тогда

 (4.17)


На главную