Курс лекций по электротехнике. Задачи контрольной

Технологические особенности изготовления диодов СВЧ диапазона

Туннельный диод относится к группе полупроводниковых приборов, вольт-амперные характеристики которых имеют участок, соответствующий отрицательному дифференциальному сопротивлению прибора. Туннельный диод применяется как многофункциональный прибор (усиление, генерация, переключение и др.) для работы преимущественно в области СВЧ. Он может работать и на более низких частотах, однако его эффективность в этом случае значительно ниже, чем, например, транзистора.

Вольт-амперная характеристика туннельного диода Приведена вольт-амперная характеристика туннельного диода. Особенность этой характеристики заключается в следующем. В области обратных напряжений обратный ток растет очень быстро с повышением напряжения, т. е. туннельный диод обладает весьма малым обратным дифференциальным сопротивлением. В области прямых напряжений с увеличением напряжения прямой ток сначала растет до пикового значения I1 при напряжении U1 в несколько десятков милливольт, а затем начинает уменьшаться (участок АВ, в пределах которого туннельный диод обладает отрицательной проводимостью G. Ток спадает до минимального значения I2 при напряжении U2 порядка нескольких сотен миливольт, в дальнейшем прямой ток вновь начинает увеличиваться с ростом напряжения.

Для изготовления туннельных диодов применяются различные полупроводниковые материалы: германий, кремний, арсенид галлия, фосфат индия, арсенид индия, антимонид индия и антимонид галлия. Выбор материала в значительной степени определяется требуемыми параметрами прибора. Наиболее перспективным материалом является арсенид галлия, обладающий наилучшими параметрами. Для германиевых диодов в качестве доноров используют фосфор или мышьяк, а в качестве акцепторов — галлий или алюминий. Для арсенид-галлиевых - олово, свинец, серу, селен, теллур (доноры), цинк, кадмий (акцепторы). Для получения узкого p-n-перехода применяется метод вплавления или диффузии примесей.

Диод Шоттки Физические исследования контакта металл — полупроводник стимулировались прогрессом в области точечно-контактных полупроводниковых выпрямителей. В предвоенные годы немецкий ученый Шоттки получил основные математические соотношения, описывающие электрические характеристики этого контакта, вследствие чего подобную структуру стали называть барьером Шоттки. Однако многие замечательные свойства, предсказываемые теорией для барьера Шоттки, практически наблюдать не удалось из-за очень резкого отличия точечных диодов от идеализированной модели (значительные механические напряжения в приконтактной области, наличие промежуточных окисных слоев, мультиконтактность и т. п.). Этим, а также большими успехами приборов с p-n-переходами и объясняется тот ограниченный интерес в отношении исследований контакта металл — полупроводник и создания приборов на его основе.

p-i-n-диод состоит из трех чередующихся областей: с дырочной, собственной и электронной проводимостью. Между сильно легированными областями с дырочной и электронной электропроводностью находится i-область с концентрацией носителей, близкой к концентрации pi и ni в собственном полупроводнике (рис. 6.4. б). Концентрации носителей в р-области рр и пр , а в n-области nn и рп∙ При подаче прямого напряжения в i-область одновременно инжектируются дырки из р-области и электроны из n-области. Сопротивление i-области и всего диода становится малым, его значение определяется постоянным током, протекающим через диод.. При обратном напряжении дырки и электроны экстрагируются из i-области в p- и n-области соответственно. Уменьшение концентрации носителей в i-области приводит к увеличению сопротивления i-об-ласти и всего диода. Такая зависимость сопротивления p-i-n-диода от напряжения объясняет эффективность его применения в качестве мощного выпрямительного диода, у которого должны быть малое прямое и большое обратное, сопротивления. Разработка p-i-n-диодов с малой емкостью позволила использовать их в СВЧ диапазоне.

Лавинно-пролетный диод (ЛПД)— это полупроводниковый СВЧ-диод, в котором для получения носителей заряда используется лавинное умножение (ударная ионизация) в области электрического перехода и взаимодействие этих носителей с переменным полем в переходе в течение времени пролета. Лавинно-пролетные диоды относятся к классу двух-полюсников, обладающих отрицательным сопротивлением на зажимах, что позволяет испо-льзовать ЛПД для создания генераторов и усилителей. Отрицательное сопротивление ЛПД проявляется только на достаточно высоких частотах и не проявляется в статическом режи-ме. Причиной этого является наличие фазового сдвига между током и напряжением на ЛПД.

Пролетный режим работы ЛПД (IМРАТТ -Avalanche Transit Time — ударная ионизация и пролетное время) работы диода основан на использовании лавинного пробоя и эффекта времени пролета носителей в обедненной области различных полупроводниковых структур. Распределение поля в этой области, определяющее физические процессы в диоде, зависит от типа структуры и закона распределения концентрации примесей в областях структуры. Ниже будет рассмотрена структура типа n+—р—i—p+ (диод Рида) (рис. 7.2, a), в которой области лавинного умножения и дрейфа носителей пространственно разделены.

Параметры их характеристики, особенности устройства и применения ЛПД Основными параметрами ЛПД являются: а) выходная мощность Pвых—мощность генератора на ЛПД в заданном диапазоне частот и напряжения питания. Это важнейший параметр ЛПД. Максимальная полезная мощность генератора при заданном сопротивлении нагрузки зависит от добротности диода и от амплитуды переменного тока и напряжения. Максимальное значение выходной мощности различных типов ЛПД колеблется в пределах 10—100 мВт на частоте 7-50 ГГц;

Для ycилeния и гeнepaции кoлeбaний CBЧ-диaпaзoнa мoжeт быть иcпoльзoвaнa aнoмaльнaя зaвиcимocть cкopocти элeктpoнoв oт нaпряжeннocти элeктpичecкoгo пoля в нeкoтopыx пoлyпpoвoдникoвыx coeдинeнияx, пpeжде вceгo в apcенидe гaллия. Пpи этoм ocнoвнyю poль игpaют пpoцeccы, пpoиcxoдящиe в oбъeмe пoлyпpoвoдникa, a нe в p-n-пepexoдe. В 1961 -1962гг. Ридли, Уоткинс и Хилсум теоретически показали, что однородные образцы из некоторых полупроводниковых материалов могут иметь отрицательную дифференциальную проводимость. В 1963 г. Дж.Ганн экспериментально обнаружил токовую неустойчивость (высокочастотные периодические импульсы тока) в однородных образцах из GaAs и InP с электронной проводимостью (пoэтoмy тaкиe пpибopы нaзывaют диoдaми Гaннa). В oтeчecтвeннoй литepaтype иx нaзывaют тaкжe прибopaми c oбъeмнoй нeycmoйчивocmью или c мeждoлинным пepeнocoм элeкmpoнoв, пocкoлькy aктивныe cвoйcтвa диoдoв oбycлoвлeны пepexoдoм элeктpoнoв из «цeнтpaльнoй» энepгетичecкoй дoлины в «бoкoвyю», гдe oни xapaктepизyютcя бoльшoй эффeктивнoй мaccoй и мaлoй пoдвижнocтью. В инocтpaннoй литepaтype пocлeднeмy нaзвaнию cooтвeтcтвyeт тepмин TED (Traпsferred Electroп Device).

Объемное отрицательное сопротивление Общим условием усиления или генерации колебаний является наличие отрицательного дифференциального сопротивления, или дифференциальной проводимости. Найдем условие, при котором возможно существование отрицательной дифференциальной проводимости в однородных полупроводниках.

Пролетный режим генератора. Обычно так называют режим работы, в котором колебательная система, связанная с прибором Ганна, имеет низкую добротность. В этом случае переменное напряжение на колебательной системе мало по сравнению с постоянным напряжением и не оказывает обратного влияния на процессы в образце из GaAs. Если постоянное напряжение превышает пороговое значение, то в образце возникнут импульсы тока, частота следования которых определяется временем пролета. Этот режим уже рассмотрен как эффект Ганна.

Режим с подавлением домена

Транзистором называют электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, имеющий три и более выводов. Термин "транзистор" происходит от английских слов transfer of resistor (преобразователь сопротивления). В отличие от вакуумных СВЧ приборов, не имеющих, с точки зрения механизма работы, аналогов в низкочастотном диапазоне, в основе работы полупроводниковых СВЧ-транзисторов лежат те же физические процессы, которые определяют работу транзисторов на низких частотах. Рассмотрим факторы, которые, с одной стороны, ограничивают возможность использования низкочастотных транзисторов в СВЧ-диапазоне и которые приводят, с другой стороны, к конструктивным особенностям СВЧ-транзисторов, являясь основанием для выделения их в самостоятельную группу транзисторных приборов.

Коэффициент усиления и максимальная частота генерации. Для характеристики усилительных свойств СВЧ БТ вводится коэффициент однонаправленного усиления Кр. Он характеризует прямое усиление транзистора по мощности при условиях его согласования с источником сигнала и нагрузкой и компенсации обратной связи внешней цепью без потерь. Этот коэффициент является общей характеристикой БТ. Он не зависит от схемы включения транзистора. Пользуясь эквивалентной схемой БТ при включении с общей базой, можно получить при условии (ω/ωгp)2 <<1 следующее выражение для коэффициента усиления по мощности Кр.

Особенности создания инверсной населенности уровней В полупроводниковых лазерах используется инверсия населенностей, получаемая в полупроводниках с одним или с различными типами проводимости (p-n-переход). Идеальным было бы состояние (рис. 10.9), когда верхние уровни в области 2 полностью заполнены электронами проводимости а нижние в области 1 полностью свободны от валентных электронов, т. е. полностью заполнены дырками. В этом случае инверсия населенности была бы наибольшей.

Технологические особенности изготовления диодов СВЧ диапазона

Характерной особенностью p-n-переходов диодов и транзисторов СВЧ-диапазона является их малая емкость, что достигается уменьшением площади перехода. Конструкция приборов на основе р-n-переходов и технология их изготовления должны обеспечивать точное и воспроизводимое выполнение как поперечных размеров перехода, так и толщины слоев полупроводниковых материалов, а также требуемый уровень и профиль легирования.

Первые СВЧ-диоды были изготовлены точечно-контактным методом. Для этого к предварительно отполированной и протравленной пластине Si или Ge прижималась игла из вольфрама или фосфористой бронзы (часто в виде пружины) с диаметром острия от нескольких микрометров до 20 — 30 мкм. При электроформовке, заключающейся в разогреве области контакта при пропускании мощных коротких импульсов тока, образовывался контакт типа барьера Шоттки.

Диффузионный метод создания переходов основан на диффузии в полупроводник примеси, находящейся в газообразной, жидкой или твердой фазе (рис. 4.3). В зависимости от глубины залегания перехода х0 он может быть плавным или резким. При малой толщине р-области переход можно считать резким со ступенчатым изменением концентрации примеси.

Рис. 4.3 Формирование диффузионного p-n-перехода (а) и распределение примесей в переходе (б)

Для уменьшения последовательного сопротивления объема полупроводника при изготовлении переходов часто используют эпитаксиальные слои. Метод эпитаксиального наращивания позволяет получать пленки полупроводникового материала с требуемой концентрацией примеси на поверхности исходного монокристалла (подложки). Структура кристаллической решетки эпитаксиального слоя при этом идентична структуре подложки. Для получения эпитаксиального слоя на поверхности монокристалла разлагают химические соединения полупроводникового материала с примесью веществ, необходимых для легирования слоя. Можно получать эпитаксиальные слои как с тем же типом элект-ропроводности, что и исходный материал подложки, но с другим удельным сопротивлением, так и с противоположным типом электропроводности. В первом случае, например, на поверхности сильнолегированной низкоомной подложки формируют слаболегированный высокоомный слой нужной толщины. Во втором — эпитаксиальный р-n-переход.

Πо конструкции переходы делятся на планарные и мезаструктуры. На рис. 4.4 приведена схема технологического процесса изготовления планарного перехода на эпитаксиальной подложке. Исходная подложка с нанесенным на нее эпитаксиальным слоем (рис. 4.4 а) имеет толщину порядка долей миллиметра, толщина высокоомной пленки Iэп, являющейся базой перехода, может составлять от долей до нескольких десятков микрометров. Малые площади переходов получают за счет использования прецизионной фотолитографии. Для этого эпитаксиальную пленку окисляют, в результате чего на ее поверхности образуется слой двуокиси кремния толщиной порядка 1 мкм. Далее наносят слой фоточувствительного материала — фоторезиста (ФР) (рис. 4.4 б). При освещении фоторезиста ультрафиолетовым светом через маску (фотошаблон) экспонированные участки полимеризуются. После растворения неэкспонированных участков фоторезиста в пленке окисла протравливают окна заданной конфигурации и размеров (рис. 4.4 в). Диаметр окна (или его ширина) при изготовлении приборов СВЧ равен обычно нескольким микрометрам — десятым долям миллиметра. Через полученные окна проводят локальную диффузию акцепторной примеси, например бора, для формирования р-области в эпитаксиальном слое n-Si (рис. 4.4 г). При малых размерах окна следует учитывать, что примесь проникает не только в глубь подложки, но и под края окон, образуя краевые области, имеющие обычно сферическую или цилиндрическую форму.

Эпитаксиальная технология позволяет получать переходы с малой толщиной базы. Отметим, что при малой толщине высокоомного эпитаксиального слоя Iэп область, обедненная основными носителями, может перекрыть весь эпитаксиальный слой и достигнуть сильнолегированной подложки (эффект смыкания).

Рис. 4.4 Схема технологического процесса изготовления диффузионного планарного р-n-перехода на эпитаксиальной подложке

Важное место в изготовлении приборов занимают процессы формирования невыпрямляющих (омических) контактов (ОК на рис. 4.4 г), служащих выводами прибора. Такие контакты должны иметь малое сопротивление, не зависящее от полярности приложенного напряжения. Омические контакты выполняются чаще всего в виде соединения металла с сильнолегированным полупроводником. В простейшем случае сильнолегированный слой полупроводника образуется при сплавлении металла с полупроводником (при этом металл является донором или акцептором). Омические контакты могут быть многослойными, т. е. состоять из различных металлов. Например, омические контакты в приборах из GaAs получают, напыляя вольфрам и никель с последующим осаждением золота.

На одной исходной подложке обычно получают несколько десятков и даже сотен переходов. При производстве многослойных приборов, например транзисторов, процессы фотолитографии и локальной диффузии повторяют несколько раз.

Планарную технологию применяют также при создании приборов из Ge и GaAs. Пленку SiO2 в этом случае осаждают на поверхности полупроводника при термическом разложении кремнийорганических соединений.

Устройство диода с мезаструктурой показано на рис. 4.5 На подложке полупроводника n-типа формируют область p-типа и омические контакты (рис. 4.5 а). Затем верхний контакт защищают фоторезистом и через маску формируют вывод р-области требуемого диаметра. После вытравливания металла и полупроводника остается участок диаметром а и высотой А, возвышающийся над подложкой в виде столбика (рис. 4.5 б). Подложка может быть выполнена по эпитаксиальной технологии, что позволяет изготовлять переходы с толщиной базы, составляющей единицы микрометров. Диаметр мезаструктуры а (рис. 4.5 б) определяется емкостью перехода и составляет обычно десятки — сотни микрометров; высота зависит от назначения прибора и, как правило, равна единицам — десяткам микрометров. Боковая поверхность мезаструктуры может быть защищена слоем SiO2 для уменьшения токов утечки и увеличения пробивного напряжения.

В последние годы для создания переходов с малой толщиной полупроводниковых слоев применяют метод ионного легирования (ионной имплантации), при котором поверхность полупроводника бомбардируют пучком ионов (акцепторов или доноров), сфокусированных и ускоренных до высоких энергий. Глубина проникновения ионов определяется их энергией, а степень легирования — продолжительностью облучения мишени. При энергия частиц 100 кэВ глубина имплантированного слоя обычно около 1 мкм.

Рис. 4.5 Эпитаксиальная мезаструктура:

а ) исходная пластина с p-n-переходом и омическими контактами; б)устройство диода

Приборы с выпрямляющим контактом типа барьера Шоттки могут иметь планарную конструкцию (рис. 4.6) или выполняться в виде мезаструктуры. При их создании используется полупроводниковый материал с одним типом электропроводности, поэтому в технологическом процессе отсутствуют операции диффузии (или ионного легирования). Основным методом получения выпрямляющего контакта является вакуумное напыление металлических слоев на монокристалл полупроводника. Большое значение для получения качественного контакта с барьером Шоттки имеют состояние поверхности полупроводника и выбор материала металлического электрода. Металлическую пленку обычно напыляют на полупроводник, после чего ее толщину увеличивают электролитическим осаждением или повторным напылением. Контакты чаще всего бывают многослойными и состоят из различных металлов. Металл для внешнего покрытия выбирают с учетом последующих паек при монтаже прибора.

Рис. 4.6. Структура диода с барьером Шоттки, изготовленного методами планарной технологии

Уменьшить сопротивление объема полупроводника и улучшить отвод теплоты от перехода в планарных и мезаструктурах можно путем уменьшения толщины полупроводниковой подложки и замены ее материалом с большей теплопроводностью, например медью или золотом. Конструкции таких структур, называемых приборами с интегральным теплоотводом, показаны на рис. 4.7 Толщина полупроводниковой структуры lстр может быть доведена до 10 — 20 мкм. Толщина медной подложки lм обычно составляет несколько десятков — сотни микрометров.

Рис. 4.7. Планарная (а) и мезаструктура (б) с интегральным теплоотводом; в, г, д — последовательности технологических операций при изготовлении структуры

При изготовлении таких структур на исходной (например, из низкоомного полупроводника n+-типа) подложке толщиной lп0 эпитаксиальным наращиванием получают пленку n-материала толщиной lэп, а затем полупроводника p+-типа с образованием р+-n-перехода (рис. 4.7 в). После выполнения на p+-материале омического контакта на структуре с этой же стороны гальваническим методом осаждают слой меди большой толщины (рис.4.7г). С противоположной стороны шлифовкой и селективным травлением уменьшают толщину исходной подложки до lп так, что толщина всей полупроводниковой структуры становится небольшой (рис. 4.7 д). Далее методом фотолитографии формируют мезаструктуру (рис. 4.7 б), При монтаже структуры в корпус медное основание припаивают к массивному держателю, поэтому такие переходы могут рассеивать мощность в десятки ватт.

Контрольные вопросы:

В чем заключается эффект накопления заряда?

Почему ДНЗ называют диодами с резким восстановлением обратного тока или обратного сопротивления?

Перечислите основные требования к ДНЗ.

Перечислите методы изготовления диодов СВЧ. Кратко опишите каждый из них.


На главную